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Abstract 
 
We study the evolutionary Prisoner’s Dilemma on two social networks obtained from 
actual relational data. We find very different cooperation levels on each of them that 
cannot be easily understood in terms of global statistical properties of both networks. We 
claim that the result can be understood at the mesoscopic scale, by studying the 
community structure of the networks. We explain the dependence of the cooperation 
level on the temptation parameter in terms of the internal structure of the communities 
and their interconnections. We then test our results on community-structured, specifically 
designed artificial networks, finding perfect agreement with the observations in the real 
networks. Our results support the conclusion that studies of evolutionary games on model 
networks and their interpretation in terms of global properties may not be sufficient to 
study specific, real social systems. In addition, the community perspective may be helpful 
to interpret the origin and behavior of existing networks as well as to design structures 
that show resilient cooperative behavior. 

 
 

Introduction 
 
The emergence and survival of cooperation in adverse environments has been, for a long 
time, a challenging problem for scholars in disciplines as diverse as biology, sociology or 
economics [1-3]. While some partial answers have been advanced in the last forty years 
[4], cooperation among unrelated individuals is far from understood. Social dilemmas, 
situations in which individual rationality leads to situations in which everyone is worse 
off, are a prominent example of this conundrum [5]. Within the general framework of 
evolutionary game theory, which is particularly well suited to study this problem, the 
Prisoner’s Dilemma (PD) is a paradigmatic setting to capture the paradox of altruism 
persistence against short-term benefits of egoism. In this game two players choose 



between cooperation (C) or defection (D), the payoffs for the two actions being as shown 
in the following (Table 1).  
 
Relations between different possible payoffs follow the rule b > 1 > ε > 0 , that 
immediately poses the dilemma: While the rational choice is to defect, it leads to a highly 
inefficient outcome as compared to that obtained by two cooperators. In other words, a 
decision that should be good for the individual leads to a poor result from the global 
(group, social) viewpoint. This is the most stringent social dilemma in so far as to defect 
is a dominant strategy: "Softer" dilemmas (stag-hunt, snowdrift [5] require to coordinate 
or anti-coordinate with the other player’s choice, but there is not a dominant option. We 
focus here on the PD because it represents the situation in which cooperation is more 
difficult and, therefore, its origin and stability is more problematic. 
   
Among the plethora of studies devoted to this issue, a particularly important and fruitful 
one is the modeling of the population as a set of non-rational, learning agents that interact 
locally [6-11] (see [12] for a very recent review). Locality is introduced in the model 
through a network on which agents are placed. These agents then play the game only with 
their neighbors (in neighborhoods that can be defined in different ways) instead of 
interacting with all other agents. Learning is introduced through imitation: after a round 
of games has been carried through the whole lattice, agents look at their neighbors and 
choose the strategy that has led to the highest payoff before proceeding to the next round 
of games. With these two ingredients, namely locality and imitation, it is generally 
observed [6,11,13] that states in which a sizeable part of the population cooperates 
emerge (at least for values of b not too close to 2), the mechanism for this emergence 
being the formation of clusters of cooperators that can successfully outcompete defectors.  

Naturally, the question arises as to whether this mechanism for the emergence of 
cooperation appears also in real social networks [14]. As a first step to answer this 
question, some authors have focused their interest on the influence of certain structural 
features that have been observed in real networks on the evolution of cooperation, such as 
the small-world phenomenon [15] or the scale-free character of the degree distribution 
[16]. A general conclusion of this research is that the inhomogeneity of the degree 
distribution plays a central role on this issue, and that it may favor the emergence of 
cooperation. However, none of these studies deals with true social networks, as they are 
all based on different types of artificial models. To our knowledge, there is only one 
paper about the PD on real social networks [17], but its point of view is dynamical and 
unrelated to the present one. Therefore, our research is a first attempt to understand the 
relevance of considering empirical social networks as a support for the local interactions 
in the framework of imitation models. 

 

Materials and Methods 

Datasets 



For our research we have used two social substrates obtained by sampling real relational 
data. We have chosen these substrates instead of other social network data available, such 
as the IMDB network for actor collaboration in movies or the scientific collaborating 
networks, because their links are defined through true personal exchanges. In contrast, 
these other public data are bipartite networks, where links are defined by joining the 
collaboration framework (movies, research projects, articles, etc.) which does not 
necessarily imply mutual interactions. Our first substrate is a social network obtained 
from the email traffic between members of University Rovira i Virgili (in Tarragona, 
Spain; email network from now on), where nodes represent individual email addresses 
and undirected links between two nodes indicate bidirectional communication (at least 
one email in each direction) [18]. Our second real social substrate consists of nodes 
representing users of the "Pretty-Good-Privacy" encryption algorithm (PGP network, 
from now on), while links trace trust relationships between those persons who sign each 
other’s public keys [19]. For a comparison of some of their statistical properties see Table 
2.  

 

Dynamics 

Our simulations of the PD over all the networks (both email and PGP, as well as on the 
models to be introduced below) follow strictly the rules in [6,8], namely: 
  
• Initial strategies of agents are assigned randomly with the same probability to be C or 

D (we have checked that other choices for the initial fraction of C or D lead to similar 
results). 

  
• The game is played between each pair of neighbors, and payoffs are accrued 

according to Eq. (1), with ε = 0  although we checked that its value (being small, e.g. 
0.01) does not affect the results. 

 
• Accumulated payoffs of all agents are computed by adding up the results of the games 

with their neighbors in the present turn. 
 
• In the next round, every agent imitates the strategy of the most successful agent in her 

neighborhood (randomly selected if there are two or more agents with the same 
payoff), after which payoffs are reset to zero. 

  
While the networks we use are obtained from experimental measurements and, as such, 
are given, there are different options for the learning rule of the agents we place on the 
network. We chose to stick to the (unconditional) imitation rule described above for a a 
number of reasons. From the methodological viewpoint, imitation allows a direct 
comparison to other studies, such as [6,8] while, on the other hand, its deterministic 
character makes its numerical study much more amenable. Importantly, for global 
interactions learning by imitation ends up in global defection, and hence cooperation in a 
local model can not be due solely to this learning rule. From the theoretical viewpoint, it 
is clear that other rules, such as best-reply, will lead straightforwardly to a fully defecting 



population even with local interactions. It can be argued that imitation is too simple a rule 
but, as discussed in [9], there are several reasons why agents may fail to recognize they 
are in a dilemma situation, which would lead them to defection; another reason for the 
use of imitation is as a mode of economizing behavior [20]. From the experimental 
viewpoint, there are several reports that indicate that imitation is commonly used by 
humans [21-23]. Finally, imitation can be justified in psychological terms by looking at 
how confirmation and disconfirmation of beliefs are carried out [24] and has been also 
proposed as a relevant force to drive the evolution towards economic equilibrium [25]. 
Specific aspects where the use of other learning mechanisms can change our results will 
be discussed below (see Conclusions). 
  
Finally, we note that the update rule for strategies is synchronous, i.e., all agents update 
their strategy at the same time, proceeding to a new round of the game subsequently. 
Changing to a non-synchronous update is known to have non-trivial consequences [7,26]. 
However, non-synchronicity is difficult to deal with in general, as the particular way to 
introduce it comes dictated by the application of interest and different procedures lead to 
different results; that is why it has been considered only rarely in the framework of 
evolutionary game theory, and only in very simple and arguably arbitrary ways. Note also 
that the rule is based on the total payoff accumulated by every player, which obviously 
makes hubs more influential than nodes with very few links. One could think of using the 
average payoff (i.e., the payoff divided by the degree). While this choice would make 
nodes more equivalent, it requires the players to be aware of very much information 
about their neighbors, and this information is more difficult to obtain than the absolute 
payoff (or some estimate of it).  

 

 

Results 

Let us begin by examining the results of simulations of the PD on real social networks as 
a function of the temptation parameter b. In Fig. 1 we plot the final density of cooperators 
on the two cases addressed here, the email network and the PGP network. The first 
remarkable feature of these plots is the high level of cooperation attained even for large 
values of b on both networks, as compared to the results on regular lattices [6,8,11] with 
the same imitation dynamics. The cooperation levels are not as high as those reported by 
Santos et al. [16,28,27] on scale free networks, although in their simulations the 
dynamics is stochastic, and therefore a direct comparison can not be made. In this regard 
we also want to stress that the two networks we are analyzing can not be considered 
scale-free: The email network has a clear exponential distribution of degrees, and the 
PGP network presents two regions with a clear crossover from a power law behavior with 
exponents -2.63 (for degree k < 40) and -4 (for degree k > 40) indicating strongly a 
bounded degree distribution.  
 
Nevertheless, the crucial result arising from Fig. 1 is that the dependence of the level of 
cooperation on the temptation parameter b is very different for both networks. As we may 



see from the plots, the cooperation level on the email network is a decreasing function of 
b, going from values very close to unanymous cooperation for  b  1to about a 15% for b 
close to 2. On the contrary, the PGP network presents an almost constant cooperation 
level, with a variation of a 10% at most in all the range of b values, except for b = 2. 
These results inmediately lead to the conclusion that there is no typical behavior of the 
cooperation level on true social networks, at least in the framework of the PD with 
imitation dynamics or learning. 
  
The above conclusion is further reinforced by noting that the cooperation level in each 
network changes in a very different manner when their original structure is distorted. To 
this end, we have compared the results on the two networks with their randomized 
version preserving the degree of each node, carried out through a rewiring process [29]. 
The process, that consists of repeatedly choosing at random two nodes and exchanging 
one neighbor of each node (also selected randomly), destroys correlations between nodes 
(and in particular the community structure we will discuss below). Figure 1 shows clearly 
that playing the game on the real networks and on their randomized versions gives rise to 
opposite behaviors: On the email network cooperation reaches extremal values, higher 
than the random case when b is close to 1, and lower when b is close to its maximum 
limit of 2. On the contrary, on the PGP network cooperation is higher on the random 
version for low values of the temptation b, and worse for higher values. Remarkably, the 
cooperation level in the random versions of the two networks is very similar, and close to 
those reported in [27] for the configuration (random) model, although it must be kept in 
mind that the dynamics is different in the latter case; interestingly, this does not seem to 
induce large differences in behavior in this respect.  

Our two examples, email and PGP, do not seem to fit in any of the categories previously 
reported in the literature for the behavior of the PD, which implies that the macroscopic 
(global, statistical) similarities between both topologies (see Table 2) are not determinant 
for the opposite behaviors observed. Furthermore, the fact that randomization, while 
preserving the degree distribution, drives the behavior of the two networks to the same 
general pattern, indicates that neither the whole network nor individual agents provide the 
clue to understanding our observations. Therefore, in order to gain insight on this 
problem, we must consider an intermediate, mesoscopic organizational level as the 
possible source of the explanation for the dramatic differences observed in the original 
systems. This in turn requires a deeper analysis of the structure of both networks, which 
is what we subsequently do. 

 

Communities 

As a first attempt to understand networks at a mesoscopic level, we propose to focus on 
their community structure. Community structure is a common feature of many networks: 
Communities can be qualitatively defined as subgraphs with dense connections within 
themselves and sparser ones between them. A quantitative definition of communities is 
introduced as the partition of a network that optimizes the quality function known as 



modularity: Q = (err −r∑ ar
2 )  where err are the fraction of links that connect two 

nodes inside the community r, ar the fraction of links that have one or both vertices inside 
the community r, and the sum extends to all communities r in a given network [30]. The 
modularity of a given partition is then the probability of having edges falling within 
groups in the network minus the expected probability in an equivalent (null case) network 
with the same number of nodes, and edges placed at random preserving the nodes’ 
degree. There exist many other ways to introduce the concept of community that can be 
found in the literature of social sciences [14], we have chosen modularity for being a 
global observable proposed in the physics literature with a large success in the 
identification of known sub-structure in networks. 
  
Among the wide variety of algorithms available to carry out this maximization process 
[31], we used a divisive algorithm proposed by one of the authors based on Extremal 
Optimization (EO) heuristics [32]. A detailed description of the method is beyond the 
scope of the paper, but full details can be found elsewhere [33]. Any other algorithm to 
optimize modularity can be used, provided the optimal values of modularity found are 
competitive. 
  
Once we have determined the number and size of the network communities, we focus on 
the study of two structural mesoscopic characteristics: The connectivity between 
communities and their internal organization.   
 
 

Inter-community structure 

To summarize the results obtained from a community analysis of both social networks 
and to facilitate their comparison, the outcome of our analysis is jointly presented in Fig. 
2A and Fig. 2B for the email and PGP respectively. Each node corresponds to a 
community, and a link between two nodes denotes cross-relations. In addition, the size of 
nodes and links gives information about community size and number of cross-links, 
respectively. It is evident from the plot that communities in the email network are densely 
interconnected, and sparsely interconnected in the PGP network. The calculation of the 
weighted degree distribution (the distribution of the sums of weights of links for each 
node) P(ω )  confirms this evidence: the email community network has a  

 
P(ω )  e−αω

2

 
while the PGP community network presents a 

 
P(ω )  e−βω .  

 

Intra-community structure 

The internal structure of communities in both networks also presents important 
differences. In Fig. 2C and Fig. 2D we plot the aspect of representative communities of 
the email and PGP networks, respectively. From the plot, the differences in the internal 
structure are clear: the email communities present a very homogeneous structure when 



compared with the heterogeneity of the PGP communities. For a more quantitative 
assesment of this difference, we have calculated the relative difference between the 
average and the maximum value of the internal degree in each community, ΔH . This 
measure allows to grasp the heterogeneity of the internal community structure. While 
 ΔH  5 in the email network, the values of ΔH in the PGP network range from 5 up to 
35, confirming our observations. In the following, we will call local hubs the nodes in the 
PGP networks responsible for the very high ΔH ≈ 30 . 

 

Hypothesis 

Previous works have stressed the role of hubs at a macroscopical level in PD dynamics 
on adaptive networks [34-37]. Although our networks are static, it is expected that the 
presence of these local hubs in PGP communities (as well as their absence in the email 
ones) influences strongly the evolution of the PD on these networks. To be specific, local 
hubs play a double stabilizing role: First, as most nodes in the community are directly 
linked to their local hub, the whole community tends to imitate the strategy of the hub; 
second, when a less connected member of the community changes her strategy following 
an external node, the influence of the local hub makes it harder for this strategy to spread 
to the whole community. 
  
On the contrary, homogeneous internal degree distributions, as in the case of the email 
network, lead to a behavior that is not governed by hubs: All nodes are more or less 
equivalent, and indeed simulations show that their strategies evolve in a synchronized 
manner, at least to some degree. Therefore, the behavior of the email network will be 
more dependent on how the communities are connected among themselves. We thus are 
in a position to formulate our hypothesis: the behavior observed in a network with 
communities depends strongly on the intra-community heterogeneity (IH) and on the 
inter-community connectivity (IC). In this scenario, the robustness of cooperation 
observed in the PGP network is due to its low IC and high IH, whereas the fact that 
cooperation only arises for low b in the email network arises from its high IC and low IH.  
 
 
 

Discussion 

Test of our hypothesis by means of model networks 

As we have seen, the analysis of the email and PGP networks raised two characteristic 
patterns of the mesoscale: (i) IH, or existence or not of local hubs in the network, and (ii) 
IC, the degree of connections between communities. To test this hypothesis, we propose 
to use synthetic networks as a benchmark in which to tune the above mechanisms as 
follows:  
 
• First we divide a number of nodes N, into m communities of equivalent size. 



 
• Second, we prescribe the IH. We have used as standard mechanisms for the 

construction of ad hoc homogeneous and heterogeneous communities the Erdos-Renyi 
model [38] and the heterogeneous (scale-free) random graph resulting from the 
Barabasi-Albert model [39], respectively. In the first case the probability of 
connection between two nodes is constant (pintra); in the second case, the network 
grows by adding nodes with k0 links to an initial connected core, and the probability of 
connection of a node i to another existing node j is proportional to the current degree 
of node j. 

 
• Third, we prescribe the IC. We construct a unique connected component by linking 

the communities previously generated. To interconnect the resulting communities we 
prescribe a new constant probability pinter to form links between two randomly 
selected nodes from the pool of communities, whenever these nodes below to different 
communities. The density of cross-connections is controlled by the probability pinter. 
Note that pinter must be sufficiently large to ensure the existence ofa unique connected 
component, but not so high as to mask the actual communities (i.e. an accurate 
detection algorithm should still separate the prescribed communities). 

 
• Finally, we check by using a community detection algorithm (extremal optimization 

[33]) that the communities obtained at the best partition of modularity are the 
prescribed ones. 

  
We have built up four statistically significant synthetic test networks with the same 
number of nodes (N = 10000) and the same number of communities (m = 75), 
corresponding to four extremal configurations corresponding to the combination of low 
and high values of the IH and IC. Our expectation is that the configuration corresponding 
to low IH and high IC will be representative of the class of mesoscopic traits observed in 
the email network; conversely, high IH and low IC should be representative of the class 
of mesoscopic traits observed in the PGP network. The other two cases, low IH and low 
IC, and high IH and high IC should constitute intermediate configurations between the 
former ones. The statistical properties of the so obtained networks are listed in Table 3.  

At this point, we want to emphasize that the statistical properties of the email and PGP 
networks (Table 2) and their synthetic counterparts (cases A and D in Table 3) present 
strong dissimilarities. First, we notice that the degree distributions of the synthetic 
networks are different from those observed in real networks. In addition, the clustering 
coefficient of the synthetic networks is almost an order of magnitude smaller than in the 
real networks. Finally, the assortativity coefficient of the synthetic class with low IC is 
negative, while the other two present positive values of assortativity. These different 
statistical properties of our synthetic and empirical networks are specially interesting for 
the validation process: Since the list of similarities between the two sets of networks has 
been reduced to the desired inter and intracommunity structural properties, any agreement 
we may find on the behavior of cooperation dynamics can be safely attributed to these 
mesoscopic features. 



Figure 3 shows the evolution of cooperation as a function of the temptation parameter b 
for our four synthetic networks. We discuss first the behavior of networks corresponding 
to A and D configurations (the synthetic classes of the empirical email and PGP 
networks, respectively). Although, in general, the values of final density of cooperators 
are smaller than those reached in the empirical cases (see Figure 1), synthetic networks 
reproduce the qualitative behaviors of the two real social networks in terms of sensitivity 
to changes of the temptation value b. Actually, the evolution of cooperation on the 
synthetic networks presents the observed tendencies even more emphasized than the 
empirical ones. On the one hand, all values of density of cooperators in case D (PGP-
class) are close to the density established as initial fraction of cooperators ( ρ = 0.5 ), 
revealing extraordinarily high levels of stability of the strategies played by agents. On the 
other hand, the decrease on the cooperation level shown in case A (email-class) is 
somewhat larger than that of the empirical email network for the same range of 
temptation values. 
  
Additional plots in Fig.3 help us to understand, separately, how each mesoscopic 
characteristic acts over cooperation. Comparing the behavior of configurations A and D 
with the other two classes, B and C, we observe that when both mesoscopic 
characteristics are high (configuration B), the system presents remarkable rates of 
cooperation. On the other hand, for low values of both mesoscopic characteristics 
(configuration C) the sensitivity to the temptation parameter is increased, the maximum 
level of cooperation is smaller, and the decay on cooperation is sharper. Consequently, 
we observe that IH seems to be more determinant than IC as a stabilizing factor against 
changes on the temptation to defect. Conversely, IC is more relevant to the maximum 
level of cooperation reached than IH. It is then clear that the behaviors observed on the 
email and PGP empirical networks (and on their synthetic counterparts) is the result of 
the interplay of both mesoscopic structural properties, since we cannot reach case D from 
case A by tuning only one of them. 
 
 

Conclusions 
 
In this work we have addressed the issue of the emergence of cooperation on true social 
networks in the framework of the evolutionary PD with imitation. Our results on two 
different networks show clearly that the specific details of the network considered are 
very relevant to determine the level of cooperation reached. Our analysis of the 
community structure of both networks lead us to the hypothesis that two mesoscopic 
structural properties (the connectivity between communities, IC, and their internal 
structure, IH) influence the evolution of cooperation in social networks by raising or 
lowering the level of cooperation and the stability of the behavior of the communities 
against changes on the temptation to defect. In order to verify this claim, we have 
designed synthetic model networks where these two features can be tuned as desired. 
Simulations on four such synthetic networks confirmed that, though their structural 
features have little in common with the empirical ones, except for the mesoscopic 
characteristics under study, the behavior of cooperation is very similar. Our models also 
show that both mesoscopic structural characteristics, IH and IC, influence the robustness 



of cooperation against changes on the temptation to defect, in excellent agreement with 
the observation made in the real social networks analyzed. 
  
We stress that, as stated in the introduction, our results combine two ingredients: locality 
(given by the network) and learning by imitation. In this paper we focus on the network 
structure and find uncontestable evidence of the relevance of IH and IC on the dynamics 
given by our update rule, unconditional imitation. This is enough to claim that network 
structure has to be taken into account in general, as aggregate characteristics may not 
give clues to understanding their behavior. However, we realize that the question then 
arises as to the influence of these network features on other dynamics. A thorough study 
of this issue is beyond the present work, because evolutionary game theory on graphs 
depends very strongly on the specific rule considered, and there are very many different 
choices [11-13]. In the case of the networks studied here, it is important to have in mind 
that unconditional imitation leads to lower levels of cooperation [13] than the stochastic 
rule used in [16] (proportional update). On the other hand, hubs have been shown 
recently to play a role similar to the one discussed here under such a proportional update 
dynamics [37]. To verify that our results are not an artifact of the imitation rule, we have 
repeated our simulations with proportional update. The results are qualitatively the same, 
the decrease in cooperation being more abrupt for the email network and somewhat 
steeper for the PGP network, but the simulations are much more demanding because it 
takes much longer to reach a steady state. Therefore, while a detailed comparison of these 
(and other) rules would require considerable computational effort, we can at least be sure 
that the general scenario we are describing will apply to proportional update.  On the 
other hand, best-response-type rules lead, generally speaking, to the same outcome as 
well mixed populations [13], and it is clear that in that case the network structure might 
control the time to reach asymptotics, but not the final state itself. In any event, it is clear 
that this issue deserves further and thorough study. 
  
Dwelling further on the evolutionary perspective, the work by Eguíluz et al. [34] 
indicates that if the network is allowed to co-evolve with the strategies, a network with 
hubs develops. Interestingly, in this network with hubs, the cooperation level shows 
similar dependence on the temptation parameter, much as we have found here for the 
PGP network. Along similar lines, recent work by Santos et al. [36,40] suggests a 
connection between the emergence of cooperation and the evolutionary appearance of 
degree heterogeneity. In this context, our study, which we stress is carried out on static 
networks, suggests that the cooperation levels we observe in the PD may be related to the 
different origin of the two networks: While the PGP network is spontaneously formed 
and with a clearly cooperative goal in mind (namely, finding help to ensure 
communication privacy), the email network arises from an underlying external structure, 
whose main purpose is not so clearly cooperative as it involves many other aspects and 
tasks. Our results would then support the existence of community structures organized 
around hubs with resilient cooperative behavior. 
  
The above comment suggests, in addition, that our results may be of interest for the 
design of hierarchies and organizations with tailored cooperation behavior. We have seen 
that the email network reaches, for moderate values of the temptation parameter, 
cooperation levels very close to the optimum. Therefore, networks with this structure 



should be used in order to achieve very high performance levels in terms of cooperation. 
On the other hand, while the email network is quite susceptible to an increase of the 
temptation parameter, and hence exhibits a degrading of the cooperation for large 
temptations, the PGP network, with its weakly connected communities with hubs, is 
much more robust in this respect, and ensures cooperation for almost any temptation. 
Organizations with a PGP-like structure would exhibit a very robust cooperation, 
although there would always be defectors. In connection with this, it is important to note 
that our social networks are obtained by looking at bidirectional links, which may be 
related to an a priori willingness to cooperate among the linked individuals. This may be 
an important ingredient for the design of cooperative networks and a hint towards the 
understanding of cooperation.  Further research at the mesoscopic scale, looking at 
different combinations of IH and IC structures, could lead to designs that would be both 
optimal and robust (such as, e.g., the structure in Fig. 1B). Interestingly, this conclusion 
may carry over to different dynamical contexts (other than evolutionary game theory): 
For instance, recent results on synchronization dynamics in a system of coupled 
oscillators show a strong influence of the community structure as well [41], and hence 
communities have to be taken into account much in the same way we are describing here. 
On the other hand, an intriguing issue is the connection of our results to the problem of 
the evolutionary origin of cooperation. One of the explanations suggested in this 
framework is the relevant role of group selection (see, e.g., [42] and references therein). 
In this context, the possibility of making a connection between communities and group-
like entities seems very appealing, and is certainly a topic worth pursuing.   

Finally, we want to emphasize our main conclusion, namely that cooperation in real 
social networks is a complex issue depending on the combination of the effects of several 
structural features. This result has far-reaching implications: Thus, several previous 
researches have considered how cooperation emerges in the PD on different model 
networks, including gaussian, scale free and small world ones as paradigms of social 
networks. There are two main differences between our work and those previous ones: 
first, the cooperation level is in general higher that in the model networks, and second, 
results are very different for similar global parameters of the network due to the influence 
of the community structure, often undetected by global measurements. It is then clear that 
any approximation to the evolution of cooperation in social networks based on the 
generalization of only one of these structural features is far too simplistic and may be 
misleading. Although, as stated in the introduction, we are studying here the hardest 
social dilemma, we envisage that similar conclusions may apply to the other dilemmas 
represented by coordination or anti-coordination games,  as arguments based on the inter- 
and intra-structure of the communities may well carry over to them. In any event, we 
believe that subsequent studies on these issues should then be carried out on a case by 
case basis, and should involve a careful analysis at a mesoscopic (community) level, 
trying to find out whether behaviors can be predicted or classified in classes attending to 
this structure. 
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Figure Legends 
 
Fig. 1. Evolution of cooperation in real social networks. Black lines: Density of cooperators as 
a function of b, obtained by numerical simulations on the email (left) and PGP (right) networks. 
Red lines: Density of cooperators on random networks generated from the original ones by a 
rewiring procedure that preserves the degree distribution(see text). The equilibrium densities of 
cooperators have been obtained by averaging 500 generations, after a transient time of 750 
generation steps. Each point corresponds to an average over 1000 independent simulations with 
50% cooperators and defectors as the initial condition. 
 
Fig. 2. Community structures of the email and PGP networks. Top: Community structures of 
the email (A) and PGP (B) networks. Nodes correspond to communities (where size is 
proportional to their number of members) and links represent cross-connections (where width 
corresponds to the number of inter-connetions). Bottom: Typical examples of the communities 
detected in the email (C) and PGP (D) networks. Solid links join nodes of the community, dashed 
links join this community with others. 
 
Fig. 3. Evolution of cooperation in four synthetic networks. Cases A and D correspond, 
respectively, to the synthetic classes of networks akin to the email and PGP real networks. In case 
A communities have been built as Erdos-Renyi random graphs (pintra = 1.5 x 10-1), and the 
probability of interconnection between communities (pinter) is 5 x 10-2. Communities in case D are 
constructed as independent scale-free networks (Barabasi-Albert with k0 = 3), and after they have 
been sparsely interconnected with (pinter = 1.5 x 10-5). Case B has been obtained from D by 
increasing the probability pinter to 3.5 x 10-4, and case C corresponds to A reducing this probability 
to 7.5 x 10-4. Simulations have been performed as indicated in Fig. 1. 
 
 
 

Tables 
 
Table 1. Payoff matrix of the Prisoner’s Dilemma.  
 
 

 C D 
C 1 0 

D b ε 

 
Payoffs received by the row player when plays against the strategy in the column. The relation 
among the payoffs is: b > 1 > ε > 0 .



 
 
Table 2. Statistical properties of e-mail and PGP networks.  
 
 

Network Ref. N P(k) 〈C〉  r 
email [18] 1133   e−k /9.2  0.25 0.078 

PGP [19] 10680 
 


k−4.0 if k>40
k−2.63 if k<40{  0.26 0.238 

 
N is the number of nodes of the giant component of the network considering only those links that 
are bidirectional (indicating mutual acquaintance between nodes). P(k) is the degree distribution 
(best fit to the data). 〈C〉 is the clustering coefficient, and r stands for the assortativity coefficient 
[43]. 
 
 
 
Table 3. Statistical properties of synthetic networks with 10000 nodes and 75 communities.  
 

Class P(k) 〈C〉  r 

A (Low IH – High IC)   e−0.0018k
2

 0.031 0.013 

B (Low IH – Low IC) 
 


k−0.047 k if k>30
k−2.47 if k<30{  0.040 -0.202 

C (High IH – High IC)   e−0.003k
2

 0.080 0.110 

D (High IH – Low IC) 
 


k−0.027 k if k>30
k−2.38 if k<30{  0.090 -0.308 

 
P(k) is the degree distribution (best fit to the data), 〈C〉 is the clustering coefficient, and r stands 
for the assortativity coefficient [43]. 
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